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Abstract

In these notes, I will report on my study about some classical results
from Yang-Mills theory and four-dimensional geometry. These results
are due to several great mathematicians, namely Donaldson, Uhlenbeck,
Atiyah and so on. I will first explain basic concepts in Yang-Mills theory,
then turn to instantons and ADHM construction. Finally we see how
these theories can be applied to the study of four-dimensional topology.
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1 Preface

These notes were obtained while the author was learning the theory of 4-
dimensional manifolds. The main reference is none other than the book The
Geometry of Four-Manifolds written by Donaldson and Kronheimer, which ap-
plies the geometric aspect of Yang-Mills theory to the study of 4-manifolds and
thus of particular interests.

2 Yang-Mills theory

This section explains mathematical aspect of Yang-Mills theory.
Yang-Mills theory is a generalization of Maxwell’s theory on electromag-

netism, used to describe the weak force and the strong force in subatomic par-
ticles. It was introduced by physicists Yang C.N. and Robert L.Mills. Surpris-
ingly, Simons and Yang discovered the correspondences between Yang-Mills the-
ory and fiber bundle theory: gauge potential to connection on a principal bun-
dle, gauge field to curvature, electromagnetism to connections on U(1)-bundle,
Dirac’s monopole quantization to classfication of U(1)-bundle and so on. For a
reference, see [7].

We first review some basic concepts about connections and curvature on vec-
tor bundles. Then we will give two heuristic theorems, both of which illustrate
the principle that curvature reflects the property of connections.

2.1 Connections and curvature

Given a vector bundle E(complex or real) over X, a connection on E is a map:

∇A : Ω0
X(E)→ Ω1

X(E)

which satisfies the Leibnitz rule:

∇A(fs) = df ⊗ s+ f∇As

Here ΩpX denotes sections of
∧p

T ∗X ⊗ E, i.e. p-forms with value in E.
Provided with a trivialization τ of E, a connection ∇A can be written as:

∇A = d+Aτ

where d is the exterior differential operator of X and Aτ is a matrix of 1-forms.
Use the coordinate represention of sections, it acts on s = (f1, . . . , fn) as follows:

∇As = d

f1

...
fn

+Aτ

f1

...
fn


If the base neighborhood has coordinate chart x = (x1, . . . , xm), we also denots
its components by ∇i = ∂

∂xi +Aτi where Aτi is a matrix of functions and ∇A =
∇i ⊗ dxi.
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If the bundle E admits a metric, we will sometimes require the connection
compatible with the metric.

Definition 2.1. We say u : E → E a gauge transformation if u is a vec-
tor bundle automorphism covering π : E → X and preserve metric if E has.
All gauge transformations form a group called the gauge group of E. A gauge
transformation u acts on a conncetion ∇A as follows: ∇u(A)s = u∇A(u−1s).

A basic fact is that we can always extend a connection to a differential
operator dA : ΩpX(E)→ Ωp+1

X (E) uniquely characterized by:

• dA = ∇A on Ω0
X(E)

• dA(ω ⊗ s) = dω ⊗ s+ (−1)pω ∧∇s, for any ω ∈
∧p

T ∗X and s ∈ Ω0
X(E)

where ω ∧∇s means wedge product in coefficients.
The curvature of ∇A is defined to be FA = d2

A on Ω0
X(E). By Leibnitz rule,

FA acts tensorially on sections of E and hence belongs to Ω2
X(End(E)).

Locally, we can write curvature form as:

F τA = dAτ +Aτ ∧Aτ

This is called the structural equation. If we denote curvature by its components:F =∑
i<j Fijdx

i ∧ dxj , where Fij is a matrix of functions, then the structural equa-
tion becomes:

Fij = [∇i,∇j ] =
∂Aτj
∂xi

− ∂Aτi
∂xj

+
[
Aτi , A

τ
j

]
We see from the above that for a line bundle, the non-linear term vanishes.

Now suppose E is a Hermitian bundle over a Riemannian manifold M , we
can define the Yang-Mills functional of a given connection ∇A as follows:

‖FA‖2 =

∫
M

|FA|2dµ

And it’s easy to obtain its Euler-Lagrange equation:

d∗AFA = 0

which is known as Yang-Mills equation. When structure group is the abelian
group U(1), this equation is just classical Maxwell equation.

2.2 Integrability: flat connection

A general principle is that curvature reflects the information of connection. We
begin with a fundamental integrability theorem for connections.

Theorem 2.1. If E is a bundle with metric over hypercube H = {x ∈ Rd :
|xi| < 1, i = 1, ..., d} and A a flat connection on E. Then there is a bundle
isomorphism preserving metric taking E to the trivial bundle over H and A to
the product connection.
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The proof is standard in geometry. We fix a basis in the fiber over the origin
and transport them parallelly to different fibers. The flat condition guarantees
that parallel transportation does not depend on the choice of path and thus
gives a well-defined local frame and hence a trivialization of E.

Then we turn to another kind of integrable theorem which concerns about
holomorphic bundles. Suppose we have a holomorphic structure E on a complex
bundle E over a complex manifold Z. There is a canonical differential operator
∂̄E : Ω0,q

Z (E)→ Ω0,q+1
Z (E) uniquely determined by the following properties:

1. ∂̄E (fs) = ∂̄f ⊗ s+ f∂̄E s;

2. ∂̄E s vanishes on an open subset U ⊂ Z if and only if s is a holomorphic
section over U .

We construct it explictly. Given a holomorphic trivialization, define ∂̄E on
Ω0
Z(E) by ordinary ∂̄-operator then extends it to Ω0,q

Z (E). This is well-defined
since ∂̄-operator acts trivially on holomorphic transition functions. Obviously
this operator satisfies that ∂̄2

E = 0.

Conversely, consider a ”partial connection” ∂̄α : Ω0
Z(E) → Ω0,1

Z (E) on a
smooth complex bundle E over a complex manifold Z which satisfies Leibnitz
rule. This can be obtained in particular by a connection A on E: dA = ∂A⊕ ∂̄A :
Ω0
Z(E)→ Ω1,0

Z (E)⊕Ω0,1
Z (E). We want to ask if a partial connection is induced

by a holomorphic structure, which leads to the following definition.

Definition 2.2. We say a partial connection ∂̄α is integrable if for any z ∈ Z,
there exists a trivialization τ of E such that ατ = 0 where ∂̄α = ∂̄ + ατ is the
local coordinate representaion of a connection.

FACT: If ∂̄α is integrable, then it is induced by a holomorphic structure.
This is because the transition function of any two such trivializations is holo-
morphic.

Now we can state our integrability theorem.

Theorem 2.2. A partial connection ∂̄α on a smooth complex bundle E over a
complex manifold Z is integrable if and only if ∂̄2

α = 0.

Proof. Since we only need to prove it locally, we may assume that Z is a polydisc
K(1) = z ∈ Cd : |zj | < 1, j = 1, ..., d. Our assumption is that ∂̄α+α∧α = 0, and
we want to show that there is a smaller polydisc K(r) = {z ∈ Cd : |zj | < r, j =
1, ..., d} and a complex gauge transformation g : K(r) → Gl(n; C) satisfying
gαg−1 − (∂̄g)g−1 = 0.

We prove by induction. For n = 1, the integrable condition is vacuous. We
write α = ρdz̄ where ρ is a matrix of functions on D(1) ⊂ C. We are going to
solve:

∂g

∂z̄
− gρ = 0

where g is invertible.
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Still, since it is only a local problem, we use a cut-off function to assume
that ρ has compact support near the origin. In particular, ρ is defined on C and
is bounded. Consider δr : C→ C, z 7→ rz, the equation becomes:

∂g

∂z̄
= rρ(rz)g(z)

Therefore we can assume that N = supz∈C |ρ| is as small as we want. Let
g = 1 + f , the equation becomes:

∂f

∂z̄
= (1 + f)ρ

Now consider the Cauchy kernel − 1
2πiz and the operator:

(Lθ)(w) = − 1

2πi

∫
C

θ(z)

z − w
dz ∧ dz̄

for compactly supported function θ. It is a standard fact that:

∂

∂z̄
(Lθ) = θ

So we can transfer the PDE into:

f = L(ρ+ fρ)

If we can solve this equation and get solution f such that ‖f‖∞ is small, then
g = 1 + f will be invertible. Also, elliptic regularity for ∂̄-operator will imple
that any bounded solution is actually smooth.

By basic coordinate change, we can show that for any unit disc D in C, we
have: ∫

D

1

|z|
dz ∧ dz̄ ≤

∫ 1

0

2πr
1

r
dr = 2π

Because suppρ ⊂ D(1), for any h we have:

‖L(hρ)‖∞ ≤ N‖h‖∞

If N < 1, T (ϕ) = L(ρ + ϕρ) is a contraction mapping from L∞ to itself, and
thus have a unique fixed point f . Also, since we have estimate:

‖f‖∞ = ‖L((1 + f)ρ)‖ ≤ N‖1 + f‖∞ ≤ N(1 + ‖f‖∞)

if we assume N < 1
2 , then:

‖f‖∞ ≤ N +
1

2
‖f‖∞

which implies that ‖f‖∞ ≤ 2N . Therefore we can make (1 + f) invertible by
choosing N small.
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For general case, we need the following fact concerning about solutions’
dependence on parameters:

FACT: If ρ = ρ(z; ξ, η) is holomorphic in ξ and smooth in η, then solution
g = g(z; ξ, η) is holomorphic in ξ and smooth in η.

Now let α =
∑
αjdz̄j and αj = 0 for j = 1, ..., p. Note that this condition

is preserved by an automorphism g which are holomorphic in z1, ..., zp. Take
ρ = αp+1, then by flat condition:

0 = Φj,p+1 =
∂αp+1

∂z̄j
− αj
∂z̄p+1

+ [αj , αp+1] =
∂αp+1

∂z̄j

for j = 1, ..., p. Thus ρ is holomorphic in z1, ..., zp. Like before, we solve the
equation:

∂h

∂z̄p+1
= hρ

with zj , j 6= p + 1 as parameters. The solution is holomorphic in z1, ..., zp
and hence gives a trivialization which preserves the condition that αj = 0, j =
1, ..., p. Also by construction αp+1 = 0. By induction our conclusion holds.

2.3 Uhlenbeck’s theorem

A flat connection can be locally represented by a zero connection matrix. It
is natural to ask if connection with small curvature can be represented by a
”small” connection matrix. This is what Uhlenbeck theorem tells us.

Let B4 be the unit ball in R4 and m : R2 → S4 be the standard stereographic
map which maps the unit ball to a hemisphere in S4. We fix the metric on B4

as the pullback of the round metric on S4 by m. This is conformal to the flat
metric, so in this particular dimension four the L2-norm of 2-forms is the same
for both metrics. This choice of metric is merely a convenience, as though what
indeed is done originally by Uhlenbeck is the standard metric.

We work with trivial Hermitian bundles E over B4 and conpatible U(n)-
connections. We denote by Ar the radial component

∑
(xi

r )Ai of the connection
matrix and ‖ · ‖Lp

k
the Sobolev norm for sections with k-th weak derivatives and

all of these derivatives are in Lp space.

Theorem 2.3 (Uhlenbeck). There are constants ε1,M > 0 such that any con-
nection A on the trivial bundle over B̄4 with ‖FA‖L2 < ε1 is gauge equivalent
to a connection Ã over B̄4 with

1. d∗Ã = 0;

2. lim
|x|→1

Ãr = 0;

3. ‖Ã‖L2
1
≤M‖FÃ‖L2 .

Moreover, for suitable constant ε1,M , the connection Ã is uniquely determined
by these properties, up to a constant transformation u0 ∈ U(n).
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We provide basic steps of the proof which are of interest in geometry, but
omitt some technical details. The proof is different from the original proof of
Uhlenbeck but essencially the same. For a reference, see [3].

First we will work on S4 and then turn to B̄4, which helps us to deal with
boundary condition. Also, some topological property of S4 helps us to make
some estimate.

By a one-parameter family of connections we mean a continuous family of
connection matrices defined over S4 × R, both smooth in S4 variable and all
partial derivatives are jointly continuous in two variables.

Proposition 2.1. There is a constant ζ > 0 such that if B′t, t ∈ [0, 1] is a one
parameter family of connections on the trivial bundle over S4 with ‖F ′B‖ < ζ
with B′0 trivial, then for each t there exists a gauge transformation ut such that
ut(B

′
t) = Bt satisfies:

1. d∗Bt = 0;

2. ‖Bt‖L2
1
< 2N‖FBt

‖ if Bt 6= 0

where N is a universal constant which is given by a lemma below.

Let S be the set of all t ∈ [0, 1] such that the proposition holds. We prove
this by continuity method.

To prove this, we need two lemmas for which we omit their proof.

lemma 2.1 (Key lemma). There exists constant N, η > 0 such that for any
connection B on the trivial bundle over S4 with d∗B = 0, if ‖B‖L4 < η then
‖B‖L2

1
≤ N‖FB‖L2 .

We point out here that the proof of this lemma depends on the topological
proterty of S4.

lemma 2.2 (Estimate of higher derivatives). There is a constant η′ > 0 such
that if the connection matrix B in previous lemma has ‖B‖L2 < η′ then for each
l ≥ 1, we have:

‖B‖L2
l+1
≤ fl(Ql(B))

where fl is a universal continuous function with fl(0) = 0 and Ql(B) = ‖FB‖L∞+∑l
0 ‖∇iBFB)‖L2 .

2.3.1 Method of continuity: closedness

Now we prove the closedness of proposition 2.1. The main step is due to follow-
ing observation:

Observation: Assume {An},{Bn} are unitary connections on the trivial
bundle over S4 which are gauge equivalent. If {An} and {Bn} converge in
C∞ to A∞ and B∞, i.e. the original sequence and every derivative sequence
converges uniformly on every compact subset. Then A∞ and B∞ are gauge
equivalent.
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Proof. Let {un} be the gauge transformation sequences that take {An} to {Bn}.
Rewrite transformation formula as:

dun = unAn −Bnun

From this formula, we see that if {un} is bounded in Cr, so is {dun} since
{An} and {Bn} are bounded in C∞. For the case r = 0, supn≥1 ‖un‖∞ ≤
supm∈U(n) ‖m‖∞ < ∞ since U(n) is compact. Therefore by induction we see
that U(n) is bounded in C∞.

By Arzela-Ascoli theorem and diagonal argument, we can find a subsequence
that converges to u∞ in C∞. We assume it is the full sequence. Take limit we
obtain:

B∞ = u∞A∞u
−1
∞ − du∞u−1

∞

which shows that A∞ and B∞ are gauge equivalent.

Remarks:

1. The result is false for connections with non-compact gauge groups.

2. The proof actually adapts to any unitary bundle over any manifold.

3. If {An} and {Bn} are bounded in C∞, by taking subsequences we can
apply the above argument.

Proof. Take ζ < min{ η
2CN ,

η′

2CN } where η and η′ is given by previous two lem-
mas and C is the Sobolev constant. We may assume that C ≥ 1. If t ∈ S, then
by Sobolev embedding we have:

‖Bt‖L4 ≤ C‖Bt‖L2
1
< 2NC‖FBt‖L2 < 2NCζ

Apply key lemma:
‖Bt‖L2

1
≤ N‖FBt‖L2

This is, we have gone from an open condition ‖Bt‖L2
1
< 2N‖FBt‖L2 to a stronger

closed result ‖Bt‖L2
1
≤ N‖FBt‖L2 .

On the other hand, to apply estimate of higher derivatives, we observe that:

‖Bt‖L2 ≤ ‖Bt‖L2
1
< 2N‖FBt‖L2 < 2Nξ <

η′

C
≤ η′

since we have assumed that C ≥ 1.
By gauge invariance of covariant derivative, we find that:

‖∇(j)
Bt
FBt
‖∞ = ‖∇(j)

Bt
′FBt

′‖∞ ≤ sup
t∈[0,1],x∈S4

|∇(j)
Bt
′FBt

′ | <∞

Here we use that B′t is a one-parameter familiy of connections and the compact-
ness of S4 × [0, 1].

Therefore, for any l ≥ 1 we obtain a uniform L2
l+1-bound on all derivatives

of Bt for any t ∈ S. Then by Sobolev inequality, we obtain uniform L∞-bounds
since the base is compact.
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Now we can apply previous argument to {Bt}t∈S . For any sequence {tn} con-
verges to t0 ∈ [0, 1], by taking subsequence we can conclude that Btn converges
in C∞ to Bt0 , which is gauge equivalent to B′t0 . The condition is preserved since
we actually have a closed condition ‖Bt0‖L2

1
≤ N‖FBt0

‖L2 . Thus t0 ∈ S and S
is closed.

2.3.2 Method of continuity: openness

In this part we sketch the proof of openness since it is more like a PDE argument.
The gauge fixing equation is written as:

d∗(ut(B
′
t)) = d∗(utB

′
tu
−1
t − (dut)u

′
t) = 0

Let t0 ∈ S, we may assume that Bt0 = B′t0 = B. Put B′t0+δ = B + bδ, we
seek for a solution ut0+δ in the form:

ut0+δ = exp(χδ)

Let H(χ, b) = d∗(eχ(B + b)e−χ − d(eχ)e−χ), then the equation becomes:

H(χδ, bδ) = 0

This defines a smooth map between Banach spaces, then we use implicit function
theorem on Banach space to conclude the openness.

2.3.3 Completion of the proof

We finally come to the proof of Uhlenbeck theorem. We need two steps to come
from S4 to B̄4.

First, there is a canonical path from any connection A to the product con-
nection:

δt : R4 → R4, x 7→ tx

for t ∈ [0, 1]. Let At = δ∗t (A|B̄(0,t)), then At is a familiy of connections on the

trivial bundle over B̄4. Clearly A0 = 0,A1 = A.
By conformal invariance in dimension 4, we have:∫

B̄4

|FAt |2gdµ =

∫
B̄4

|FAt |2δ∗t gdµδ∗t g =

∫
B̄(0,t)

|FA|2dµ ≤
∫
B̄4

|FA|2dµ

Therefore the L2-norm of FAt can be controlled uniformly by that of A.
Second, we define a mapping p : S4 → B̄4 as follows: it projects lower-

hemisphere directly to B̄4 and takes upper-hemisphere first to the lower-hemisphere
by reflection then projects to B̄4. For a connection matrix α over B̄4, let
β = p∗(α),Fβ = p∗(Fα). Clearly we have:∫

S4

|Fβ |2dµ = 2

∫
B̄4

|Fα|2dµ
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Therefore we can decuce main assertion of Uhlenbeck theorem by our es-
tablished result on S4, since the curvature is bounded by a factor of

√
2. The

only possible obstruction is that p is not smooth on S3. But p and dp can be
approximated uniformly by smooth maps since p is Lipschitz. Thus the gauge
transformation can be obtained by approximation. Boundary condition can
also be satisfied by approximation process. Finally, uniqueness asssertion can
be deduced by controlling of L2

1-norm.

3 Instantons and ADHM construction

We explain the concept of instantons in this section.
Given a Riemannian four-manifold M , Hodge∗ operator splits Ω2

M into Ω+
M⊕

Ω−M , the self-dual parts and anti-self-dual parts. It can be extended to any
bundle-valued 2-forms and in particular the curvature tensor FA splits into
F+
A ⊕ F

−
A . This leads to the following definition:

Definition 3.1. We say a connection A is anti-self-dual if F+
A = 0, which is

abbreviated as ASD connections. ASD connections are also called instantons
from physical view of point.

By Bianchi identity, ASD connections trivially satisfy Yang-Mills equation.

3.1 ASD condition: two interpretations

3.1.1 Topological interpretation

We first explain a topological interpretation of instantons.
Given a complex vector bundle E over M , Chern-Weil theory tells us that

Chern class can be given by any connection A as follows:

c1(E) =
i

2π
[Tr(FA)]

c2(E) =
1

2
c1(E)2 +

1

8π2
[Tr(FA ∧ FA)]

For our case, these two classes are satisfactory since we have:

Theorem 3.1. The first Chern class c1 ∈ H2(M ; Z) classfies U(1)-bundles
over any CW complex M . The second Chern class c2 ∈ H2(M ; Z) classifies
SU(2)-bundles over any compact oriented four-manifold M4.

For a proof, see appendix in [8].
Now for SU(2)-bundles, c1(E) vanishes and hence c2(E) = 1

8π2 [Tr(FA∧FA)].
This is also equivalent to consider the second Chern number:

c2 =

∫
M

Tr(FA ∧ FA) ∈ Z
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If the base space is an oriented Riemannian manifold, we then have:

Tr(F 2
A) = −(|F+

A |
2 − |F−A |

2)dµ

where dµ is the oriented volume form. Therefore second Chern number can be
given by:

c2 =
1

8π2
(‖F−A ‖

2 − ‖F+
A ‖

2)

This gives us a lower bound of Yang-Mills functional on the space of connections:

‖FA‖2 = ‖F−A ‖
2 + ‖F+

A ‖
2 ≥ 8π2|c2|

When c2 ≥ 0, this bound is obtained precisely when A is an ASD connection.

3.1.2 Complex geometric interpretation

The second interpretation of ASD condition is related to complex manifold and
holomorphic structures.

Recall we have discussed partial connections on complex bundles and integra-
bility theorem. From this we see that given a connectionA, its partial connection
∂̄A is integrable if and only if its (0,2)-component vanishes, i.e. F 0,2

A = 0.
Now we introduce Hermitian metric on bundles. This gives us a canonical

way to identify partial connections and unitary connections.

lemma 3.1. If E is a complex vector bundle over a complex manifold Z with a
Hermitian metric on the fibers, then for each partial connection ∂̄α on E, there
is a unique unitary connection A such that ∂̄A = ∂̄α.

For Hermitian bundle and unitary connection, an integrable condition can
be stated as:

Proposition 3.1. A unitary connection on a Hermitian complex vector bundle
over Z is compatible with a holomorphic structure if and only if it have curvature
of type (1,1) and in this case the connection is uniquely determined by the metric
and holomorphic structure.

This canonical connection is called Chern connection.
We focus on the case of a complex surface with a Hermitian metric on its

tangent bundle. The complex structure and metric together defines a (1,1)-form
ω, so we have a pointwise orthogonal decomposition of Ω1,1:

Ω1,1 = Ω1,1
0 ⊕ 〈ω〉

Algebraic caculation shows that:

lemma 3.2. The complexified self-dual forms are

Ω+ = Ω2,0 ⊕ 〈ω〉 ⊕ Ω0,2

and the complexified anti-self-dual forms are

Ω− = Ω1,1
0
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Now we bring all the above together. For any connection A on E, put
F̂A = (FA, ω) be the (1,1)-component of the curvature along the metric form.
Then we have:

Proposition 3.2. If A is an ASD connection on a complex bundle E over a
Hermitian complex surface Z, the the operator ∂̄A defines a holomorphic struc-
ture on E. Conversely, if E is a holomorphic structure on E, and A is a
compatible unitary connection, then A is ASD if and only if F̂A = 0.

3.2 ADHM construction

In this section we discuss about instantons over S4. It was first observed by
Atiyah and Ward(see [10]) that the holomorphic structure of vector bundles
on CP 3 with certain real and symplectic structures can be used to describe
ASD connections on S4. Later with help of index theorem, Atiyah, Hitchin and
Singer were able to show that all instantons on S4 moduli the gauge equivalence
are a smooth manifold of dimension 8k − 3 where k is the Pontrjagin index(see
[11]). Following this, Atiyah, Drinfeld, Hitchin and Manin constructed these
instantons via just linear algebra(see [12]). Their construction is known as
ADHM construction.

We point our here that we will use the conformal invariance of dimension
four, going back and forth between R4 and S4 frequently to prove their con-
struction.

3.2.1 Riview of spin structure

First we review some facts about spin structure.
Let S be a two-dimensional complex vector space with a Hermitian metric

and a compatible complex symplectic form λ ∈
∧2

C S
∗ with |λ| = 2. This defines

an anti-linear map J : S → S by: 〈x, Jy〉 = λ(x, y). Then J2 = −1 and makes S
into a one-dimensional quaternionic vector space. Let S+,S− be a pair of such
spaces, we consider the space HomJ(S+, S−) of complex linear maps interwine
the J actions. This is a four-dimensional real vector space. It also carries an
Euclidean metric, normalized such that the unit vertors are precisely the map
preserving both Hermitian metrics and the symplectic forms.

Now given a four-dimensional Euclidean space V , we say a spin structure
on V is a pair of complex vector spaces S+,S− as above and an isomorphism
γ : V →HomJ(S+, S−) compatible with the Euclideam metric. In the standard
Euclidean space R4, we can take:

γ(e0) =

(
1 0
0 1

)
, γ(e1) =

(
i 0
0 −i

)
, γ(e2) =

(
0 −1
1 0

)
, γ(e3) =

(
0 i
i 0

)
where {ei} are natural basis.

Given a spin structure on V , consider the compositiong γ∗(e)γ(e′), which is
an endomorphism of S+. Here γ∗(e) is the adjoint with respect to the Hermitian
metric. It satisfies the following relation

13



1. γ∗(e)γ(e) = 1, if e is a unit vector,

2. γ∗(e)γ(e′) + γ∗(e′)γ(e) = 0, if e and e′ are orthogonal.

This means that ∧2(V ) acts on S+ by:

(e ∧ e′)s = −γ∗(e)γ(e′)s

where e and e′ are orthogonal. Moreover ∧− acts trivially here and we get a
natural isomorphism:

ρ : ∧+ → su(S+)

where the right hand denotes the trace-free, skew-Hermitian endomorphisms.

3.2.2 Main theorem

First consider an ASD connection over R4 with finite energy:∫
R4

|FA|2dµ <∞

Due to conformal invariance, it can be regarded as an ASD connection over
S4 − {∞}. According to the removable singularities theorem of Uhlenbeck(see
[9]), this connection can be extended smoothly to S4. In particular there is an
integer invariant:

κ(A) =
1

8π2

∫
R4

|FA|2dµ

It also makes sense to talk about the fiber E∞ of the bundle over S4.
We denote by V the standard R4. The ASD equation can be written as:

[∇1,∇2] + [∇3,∇4] = 0

[∇1,∇3] + [∇4,∇2] = 0

[∇1,∇4] + [∇2,∇3] = 0

We will denote by I, J,K the standard basis for
∧+

, as in the above form of
ASD equation.

The ADHM construction gives a one-to-one correspondence between the
gauge equivalence class of ASD connections for gauge group SU(n) and a system
of finite-dimensional algebraic data. We now describe them.

Data:

1. A k-dimensional Hermitian vector space H ;

2. An n-dimensional Hermitian vector space E∞ and a determinant form in∧n
E∞;

3. Self-adjoint linear maps Ti : H → H , i = 1, 2, 3, 4, or viewed as a linear
map T ∈ V ∗⊗Hom(H ,H );
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4. A linear map P : E∞ → H ⊗ S+, where S+ is the two-dimensional
positive spin space of V described above.

Given such a system and a point x ∈ R4, we define a linear map:

Rx : H ⊗ S− ⊕ E∞ →H ⊗ S+

by

Rx = (

4∑
i=1

(Ti − xi1)⊗ γ(ei)
∗)⊕ P

The product PP ∗ lies in End(H ⊗ S+) =End(H )⊗End(S+). The space
End(S+) contains a direct summand su(S+), which is isomorphic to

∧+
via

the map ρ in previous section. So there is a component of PP ∗, which we
denoted by (PP ∗)∧+ in EndH ⊗

∧+
. Using basis, there are components

PP ∗I , PP
∗
J , PP

∗
K ∈End(H ).

Definition 3.2. A system of ADHM data, for group SU(n) and index k, is a
system (H , E∞, T, P ) as above which satisfies:

1. (The ADHM equations):

[T1, T2] + [T3, T4] = PP ∗I

[T1, T3] + [T4, T2] = PP ∗J

[T1, T4] + [T2, T3] = PP ∗K

2. (The non-degeneracy condition): for each x ∈ R4, the map Rx is surjec-
tive.

The non-degeneracy condition means that the kernel of Rx defines a sub-
bundle E of the trivial bundle H ⊗S−⊕E∞. Then orthogonal projection gives
a connection A(T, P ) on E. We have the following fact whose proof we omit
here:

Proposition 3.3. For any system of ADHM data (T, P ), of index k, the con-
nection A(T, P ) is ASD, of finite energy and κ(A(T, P )) = k.

Now we fix model space H = Ck and E∞ = Cn so that all maps Ti, P
becomes matrices. In this case, two systems (T, P ) and (T ′, P ′) are said to be
equivalent if there exist v ∈ U(k) and u ∈ SU(n) such that:

T ′i = vTiv
−1, P ′ = vPu−1

Then we can state our main theorem:

Theorem 3.2 (ADHM construction). The assignment (T, P ) → A(T, P ) sets
up a one-to-one correspondence between (a) the equivalence classes of ADHM
data for group SU(n) and index k and (b) gauge equivalence classes of finite
energy, ASD SU(n)-connection A over R4 with κ(A) = k.
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3.2.3 Complex of an ADHM system

In this part, we relate ADHM equations to complexes.
First we explain a canonical spin structure on a two-dimensional Hermitian

vector space U with a determinant form θ ∈
∧2

U . We consider the sequence
of maps:

0 −→ C
δu−→ U

δu−→ ∧2U −→ 0

where δu is the wedge product with u. This is exact for all u 6= 0. Since we fix
a basis of

∧2
U , we can identify it with C. Now let S+ = C ⊕ C and S− = U ,

we define γu : S+ → S− be the linear map γu = δu + δ∗u. On S+ we allow that
〈1〉 and 〈θ〉 be the orthogonal basis. Then γ sets up a correspondence between
U and HomJ(S+, S−), hence defines a spin structure on U when it is regarded
as a four-dimentional Euclidean space.

We write U for the base space when it is endowed with a complex structure
and fix a basis θ ∈

∧2
U . Note that we use I to denote a basis element of

∧+

and also a complex structure. This is because a complex structure precisely
corresponds to a choice of unit vector in

∧+
.

Given a choice of complex structure, we introduce new variables:

τ1 = T1 + iT2, τ2 = T3 + iT4

Also, the complex structure decomposes S+ into two pieces, thun we can write
P as:

P = π∗ ⊗ 〈1〉+ σ ⊗ 〈θ〉
where π : H → E∞ and σ : E∞ → H . In terms of this new variables, the
ADHM equations become:

1. [τ1, τ2] + σπ = 0

2. [τ1, τ
∗
1 ] + [τ2, τ

∗
2 ] + σσ∗ − π∗π = 0

Now we construct a sequence of maps:

H
α−→H ⊗ U ⊕ E∞

β−→H

where α, β in standard complex coordinates on U = C2 are given by:

α =

 τ1
τ2
π

 , β =
(
−τ2 τ1 σ

)
Then the composite β ◦ α is just the endomorphism [τ1, τ2] + σπ. Hence the
first equation is just to say this defines a complex. More generally, replace τj by
τj − zj , which doesn’t affect the first equation, we obtain a family of complexes:

H
αx−→H ⊗ U ⊕ E∞

βx−→H

Then we have an identification Rx = α∗x ⊕ βx when H ⊗ U ⊕ E∞ is idenfitied
with H ⊗ S− ⊕E∞. This is just the identification of γu with δu ⊕ δ∗u from the
second equation. Thus we have:
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Proposition 3.4. A system (T, P ) satisfies the ADHM euqations if and only
if for each choice of complex structure on V , the maps α, β satisfies β ◦ α = 0.

Finally, the non-degeneracy condition means that αx are injective and βx
are surjective.

3.2.4 Construction in the opposite direction

In the above we constructed an ASD connection from a system of ADHM data.
Now we do the construction in the opposite side. Starting from an ASD con-
nection A over R4, Uhlenbeck’s removable sigularities theorem gives us the fiber
E∞. So it remains to construct H = HA and maps PA, TA.

Consider the coupled Dirac operators DA : Γ(E ⊗C S
+) → Γ(E ⊗C S

−).
We know that over S4 it is a Fredholm operator. We denote the kernel of D∗A
by HA. Transform to R4, we can represent an element of HA as an E-valued
spinor field ψ over R4 with decaying:

|ψ(x)| = O(|x|−3)

satisfying the differential equation D∗Aψ = 0. Conversely, it can be shown that
this is the only solutions of D∗Aψ = 0 which are O(|x|−1). Thus we can assume
ψ ∈ L2 and view HA as the space of L2 harmonic spinors. There is a normalized
inner product on HA:

〈ψ, φ〉 =
1

4π2

∫
R4

(ψ, φ)dµ

On the other hand, returing to S4, we have an evaluation map at the point
∞:

(ev) : HA → [S−]∞ ⊗ E∞
But there is a natural orientation-reversing isometry between the tangent spaces
of S4 at 0 and ∞, so we identify [S−]∞ with the positive spin bundle S+ of
R4. Then (ev) maps to S+ ⊗ E∞. Now we can define the complex linear map
PA : E∞ → HA ⊗ S+, derived from the adjoint of the evaluation map and the
skew isomorphism between S+ and its dual.

Finally, we define Ti from the above construction. It is characterized by:

(Tiψ, φ) =

∫
R4

(xiψ, φ)dµ

We may view it is the composition of multiplication by coordinate functions
with L2 projection to HA.

The main content is the following:

Proposition 3.5. For any finite energy ASD connection A on a bundle E over
R4, the data (HA, E∞, TA, PA) is a system of ADHM data and there are natural
isomorphisms:

ωx : Ker(Rx)→ Ex

giving a bundle map ω with ω∗(A) = A(TA, PA).
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3.2.5 Sketch of the proof

Here we sketch the proof of the theorem. The main tool is the spectral sequence
of a double complex. For a double complex (C ∗∗, δ1, δ2) where δ1 : C p,q →
C p+1,q and δ2 : C p,q → C p,q+1 are homomorphisms, by the first spectral se-
quence Ep,qr we mean the one such that Ep,q1 = Hp(C ∗,q, δ1). The another is
called the second spectral sequence denoted by Ẽp,qr .

Step1:
First we prove proposition 3.5, which will give one side of correspondence.

We start with an instanton A. Given a complex structure I, we will first con-
struct a double complex as well as maps α, β, τ , σ and π. We prove that (1)

there is a natural holomorphic isomorphism ω : W = Ker(β)
Im(α) → E; (2) these

constructions satisfy algebraic condition in section 3.2.3.
Fix a complex structure on R4 and makes it into a complex space U . Consider

the following double complex A p,q: they are subspaces of Ω0,p(E) ⊗ ∧q(U∗),
satisfying the growth condition ψ = O′(|x|−(p−q+2)) for ψ ∈ A p,q. Here s =
O′(|x|−m) means that |∇(l)s| = O(|x|−(l+m)) as x → ∞ for any l ≥ 0. The
differentials in the complex are as follows: we take the Dolbeault ∂̄A complex
tensored with the fixed vector space ∧q(U∗) in the horizontal directions; and take
the Koszul multiplication defined on the ∧∗(U∗)-term in the vertical directions.
It can be written as:

O′(|x|0) O′(|x|−1) O′(|x|−2)

O′(|x|−1) O′(|x|−2) O′(|x|−3)

O′(|x|−2) O′(|x|−3) O′(|x|−4)

∂̄ ∂̄

δ

∂̄

δ

∂̄

δ

δ

∂̄

δ

∂̄

δ

And it can be easily deduced from the second sequence Ẽ that:

Proposition 3.6. The total cohomology of the complex is isomorphic to E0 in
dimension two, and otherwise zero.

Next we turn to the first sequence to obtain the description of fiber E0.
Laborious analysis shows that:

Proposition 3.7. The E∗,∗1 diagram of the double complex is:

Ker(σ) ⊂ E∞ HA/Im(σ) 0
0 HA ⊗ U 0
0 HA 0

where σ : E∞ →HA is defined by σ(e) = ∂̄A(se).
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Choose complex coordinates z1, z2 on U . Let d1 : HA →HA⊗U = HA⊕HA

be the map in the E∗,∗1 diagram. Then we define τj : HA → HA be the
components of d1. Then we can check that the other differential d1 : HA⊕HA →
HA/Im(σ) is the reduction mod Im(σ) of the map:

d̃1 = (−τ1, τ2) : HA ⊕HA →HA

Following this, the only remaining differential is:

d2 : {Ker(d1) ⊂HA} → {Kerσ ⊂ E∞}

It can be extended to a map π : HA → E∞ by following lemma:

lemma 3.3. If f is a bounded section of E with |∂̄Af | = O′(|x|−2), then f
extends to a limit in E∞ as x→∞.

It can be checked that [τ1, τ2] = σπ.
The spectral sequence gives an exact sequence:

0 −→ E0,2
3 −→H−→E

1,1
3 −→ 0

where H is total cohomology of the double complex, which is known to be E0.
We write this sequence as:

0 −→ Ker(σ)

Im(π)|Ker(a)
−→E0−→

b−1(Im(σ))

Im(a)
−→ 0

where a = (τ1, τ2) : HA →HA ⊕HA and b = (−τ2, τ1) : HA ⊕HA →HA.
We can then define:

α = (a, π) : HA →HA ⊕HA ⊕ E∞

β = (b, σ) : HA ⊕HA ⊕ E∞ →HA

Since [τ1, τ2] = σπ, we know that β ◦ α = 0. Define W = Ker(β)
Im(α) , then we have

a natural exact sequence:

0 −→ Ker(σ)

Im(π)|Ker(a)
−→W−→b−1(Im(σ))

Im(a)
−→ 0

Finally, we see there is a natural map ω : W → E0. This is defined as
follows: a triple (ψ1, ψ2, e) represents an element of Ker(β) if and only if there
is a section f converging to e at infinity such that ∂̄Af = z1ψ2 − z2ψ1. Then
put ω(ψ1, ψ2, e) = f(0) ∈ E0. It can be checked that we have the following
commutation diagram:

0 Ker(σ)
Im(π)|Ker(a)

W b−1(Im(σ))
Im(a) 0

0 Ker(σ)
Im(π)|Ker(a)

E0
b−1(Im(σ))
Im(a) 0

id ω id
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Hence ω is an isomorphism. Similiarly, replace τj by τj − zj , we get a sequence
of holomorphic bundle maps, which gives a holomorphic cohomology bundle W .
It can shown that ω : W → E is actually a holomorphic bundle isomorphism.

Then we show that these holomorphic data (τ, π, σ) precisely relate to our
data (HA, E∞, TA, PA) via our construction in section 3.2.3. This shows that
the data (HA, E∞, TA, PA) is indeed an ADHM data.. Recall that we have an
evaluation map (ev) : HA → E∞ ⊗ S+. Using basis, we can write this as:

(ev) = (ev)1 ⊗ 〈1〉+ (ev)θ ⊗ 〈θ〉

for (ev)1, (ev)θ : HA → E∞. We have the following proposition:

Proposition 3.8. The evaluation map is related to the maps σ and π. Actually,
we have (ev)∗1 = σ and (ev)θ = π.

Now that since ω is a holomorphic isomorphism, we have ω∗(A) = A(TA, PA)
due to the uniqueness of a Chern connection. Note that ω is independent of the
choice of complex structure, we then finish this part of the proof.

Step2:
Then we prove that starting with an ADHM data (H , E∞, T, P ), we re-

cover the same matrix data from A = A(T, P ). Consider the following double
complex:

O′(|x|−4) O′(|x|−3) O′(|x|−2)

O′(|x|−3) O′(|x|−2) O′(|x|−1)

O′(|x|−2) O′(|x|−1) O′(|x|0)

α β

∂

α

∂

β

∂

∂

α

∂

β

∂

Here the entries are the forms with values in the trivial bundle H , H ⊕H ⊕E∞
and H respectively, satisfying the stated growth condition. The cohomology of
the rows yields the E-valued forms, and taking the vertical cohomology we get
the E∗,∗2 diagram:

0 0 0
0 HA 0
0 0 0

On the other hand, since all the original bundle are trivial, the only cohomology
in the columns is:

0 0 0
0 0 0
0 0 H

This yields the desired isomorphism between H and HA. We can verify that
under this isomorphism, Ti and P indeed correspond to the multiplication and
evaluation maps. This ends the proof of the theorem.
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4 Application to four-manifolds

This section is to discuss applications of gauge theory to the study of four-
dimensional differential topology. We will first explain the concept of inter-
section forms, which are central tools in the study of manifold topology; then
we review results proved by purely topological methods; finally we talk about
Donaldson’s diagnoalizable theorem and sketch its proof.

4.1 Intersection form

Guiding problems in differential topology study are mainly the following two:

1. geography problem: find all simply-connected manifolds which admit a
smooth structure

2. botany problem: find all exotic smooth structures on a given smooth
manifold

A useful invariant is the intersection form, for which we are going to explain.

4.1.1 Definition

For a closed oriented manifold Mn, we can define the cup product pairing as
follows:

Hk(M ; Z)⊗Hn−k(M ; Z)→ Z, (α, β) 7→ (α ∪ β)[M ]

Due to Poincaré duality, the pairing is nonsingular when torsion is factored out.
We focus on the case that M4 is an oriented simply-connected closed man-

ifold. Therefore the first and third homology group vanish and H2(M ; Z) ∼=
Hom(H2(M),Z) is free due to universal coefficient theorem. The intersection
form of M is thus defined to be the nonsingular pairing:

Q : H2(M ; Z)⊗H2(M ; Z)→ Z, (α, β) 7→ (α ∪ β)[M ]

Note that Q is a symmetric bilinear form.
The dual of intersection form coincides with the intersection product for

homology. For detailed information, see [1]. Geometric meaning is as follows.
Assume we have two oriented embedded smooth surfaces A and B of M which
intersect transversally, hence their intersection A∩B being a finite subset of M .
Let α, β ∈ H2(M ; Z) are respectively Poincaré dual to the fundamental class
of A and B in H2(M), then it can be shown that Q(α, β) is equal to the total
number of intersection points counted with signs. Note that the counting is also
symmetric with respect to A and B, consistent with Q.

Therefore the computation of intersection form can be reduced to calculate
signed total number of intersection points via appropriate choice of submanifold.
In our case, any homology class can be realized by embedded smooth surface
due to a more general result:
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Theorem 4.1 (Thom). If Mn is an oriented close manifold, then any homology
class in Hn−1(M) and Hn−2(M) can be represented by the fundamental class of
a smoothly embedded oriented submanifold, possibly disconnected in the case of
codimension 1.

For a proof, see [1]. For a easy proof concerning the Hn−2 assertion, see the
appendix in [8].

4.1.2 Classical invariants v.s intersection form

We are going to show that some classical invariants are the same in two manifolds
with equivalent intersection forms. Therefore they reflects no more information
than intersection form. These invariants are Stiefel-Whitney class, Pontryagin
class and Euler class.

First we consider the Stiefel-Whitney class. Since M is simply-connected,
H1(M ; Z2) and H3(M ; Z2) must vanish. Therefore w1, w3 vanish and the only
possibly non-trivial class is w2

1. By Wu’s formula(see [3]), w2 = v2 where v2 is
the second Wu class characterized by

〈vk ∪ x, [M ]〉 = 〈Sqk(x), [M ]〉

Hence:
〈w2 ∪ x, [M ]〉 = 〈x ∪ x, [M ]〉.

The following result from algebra tells us w2 can be obtained from the intersec-
tion form:

Proposition 4.1. Every symmetric bilinear unimodular form Q over Zr admits
a characteristic element c, i.e. Q(c, x) ≡ Q(x, x)(mod 2).

Hence w2 is the module 2 reduction of a characteristic element.
Recall Q is called even if Q(x, x) is even for every x; otherwise it is called

odd. Therefore the previous formula shows that:

Proposition 4.2. w2 = 0 if and only if Q is even.

For an oriented vector bundle E over M , there exists a spin structure if and
only if w2(E) = 0, and is unique if H1(M ; Z2) = 0. Thus we have proved:

Theorem 4.2. For an oriented simply-connected 4-manifold M , it admits a
spin structure if and only if the intersection form is even. If so, it is unique.

Next we consider the Pontryagin class. The signature τ is given by Hirze-
bruch signature theorem in dimension 4 as follows:

p1 = 3τ = 3(b+ − b−)

Finally Euler class is given obviously by:

e = Σ(−1)ibi = b2 + 2
1In fact for any oriented four-manifold, w1 and w3 vanish. For a proof, see [3]
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4.1.3 Examples

We compute the intersection form of some basic examples.
(i) Standard sphere S4. Since H2(S4) = 0, all intersection numbers vanish.
(ii) Complex projective space CP 3. Since CP 1 generates H2(M), we choose

two embedded P 1 intersecting transversally, say P 1 = {(z0, z1, 0) : |z0|2+|z1|2 6=
0}, P̃ 1 = {(z0, 0, z2) : |z0|2 + |z2|2 6= 0}. They intersect at one positive point,
hence the intersection matrix is (1). We denote the complex projective space
with opposite orientation by CP 2, then its intersection matrix is (−1)

(iii) S2×S2. By Künneth formula, S2×{p} and {q}×S2 generates H2(M).
Consider S2 × {p} and S2 × {p′} to compute the diagonal entries,S2 × {p}
and {q} × S2 to compute the off-diagonal entries. The intersection matrix is(

0 1
1 0

)
.

(iv) S2 × S2 can be viewed as compactifying the fiber of the trivial bundle
S × C. Note that complex line bundles are classified by first Chern class(see
). Starting with any complex line bundle L with Chern class c1(L) = d, we
compactifying each fiber to S2 and thus obtain a fiber bundle Md.

It’s easy to see Q11 = 0, Q12 = Q21 = 1. For the self-intersection number
of zero section, we claim that there exists a smooth section transversal to zero
section and hence has finitely many zero points(see [1]). Since the the first
Chern class of line bundle is also the Euler class of L, the fact that Q22 = d
follows from that the Euler class of a vector bundle over compact manifold is
Poincaré dual to the zeroes of a section that vanishes at finitely many points.

Therefore the intersection matrix is

(
0 1
1 d

)
.

There are in fact exactly two diffeomorphism types of Md, i.e. Md is diffeo-
morphic to M0 is d is even and diffeomorphic to M1 is d is odd. This is because
S2 is covered by upper hemisphere and lower hemisphere. Both are contractble
and hence the fiber bundles over them are trivial. Therefore Md is determined
by the transition function, i.e. determined by the homotopy class of the map
g : S1 → Diff(S2). The conclusion follows from the fact that Diff(S2) is
homotopy equivalent to SO(3) and π1(SO(3)) = Z2.

We point out here that M1 is actually CP2#CP 2.
(v)X#Y . SinceH2(X#Y ) ∼= H2(X)⊕H2(Y ), the intersection formQ(X#Y ) =

Q(X)⊕Q(Y ). For example, lCP2#mCP 2 has intersection form l (1)⊕m (−1).
(vi) Hypersurfaces in CP 3. Consider a smooth hypersurface Sd of degree

d in CP 3, for example zd0 + zd1 + zd2 + zd3 = 0. Lefschetz hyperplane theorem
asserts that the homotopy groups of a hypersurface of complex dimension n in
projective space agree with those of the ambient space up to dimension n−1, so

Sd is simply-connected. For instance, S4 has intersection matrix as 3

(
0 1
1 0

)
⊕2(−E8) where E8 will be given in next part.
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4.2 Algebraic classification of unimodular forms

We have seen some examples of intersection form above. Now we list some
algebraic results about unimodular forms. For their proof, see [6].

First we point out some results about characteristic element.

Proposition 4.3. Let c be a characteristic element of Q. Then Q(c, c) ≡
signature (mod 8).

If Q is even, 0 is a characteritic element of Q. Hence:

Corollary 4.1. If Q is even, then signature ≡0(mod 8).

For indefinite unimodular forms, we have the following classification theo-
rem:

Theorem 4.3 (Hasse-Minkowski). Any odd indefinite form is uniquely equiva-

lent to l (1)⊕m (−1); any even indefinite form is uniquely equivalent to l

(
0 1
1 0

)
⊕

mE8 where

E8 =



2 0 −1
0 2 0 −1
−1 0 2 −1

−1 −1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2


However, the classification of definite forms is still unsolved. And there

are numerous definite forms equivalence classes, say existing at least 107 even
definite forms of rank 32.

4.3 Topological classification of four-manifolds

4.3.1 Homotopy type

We say two manifolds are oriented homotopy equivalent if they are homopoty
equivalent and the equivalence map preserves the fundamental class. Clearly
intersection forms are invariant under oriented homotopy equivalence. The con-
verse holds due to Milnor:

Theorem 4.4 (Milnor). Oriented closed simply-connected 4-manifolds are ori-
ented homotopy equivalent if and only if their intersection forms are equivalent.

This is proved by using a more general theorem of Whitehead.
By Thom’s cobordism theorem, two closed manifolds with the same Stiefel-

Whitney numbers can be cobordant. Wall provided a stronger result, i.e. such
two 4-manifolds X and Y can be h-cobordant, which means there exists a
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simply-connected compact manifold W 5 with boundary X
⊔
Y , and the in-

clusions of X and Y in W are both homotopy equivalences. His proof involves
”surgery” to kill the fundamental group of W and to rearrange and cancell some
critical points of a given Morse function.

Theorem 4.5 (Wall). Oriented closed simply-connected 4-manifolds have equiv-
alent intersection forms if and only if they are h-cobordant. If so, there exists
k ≥ 0 s.t. X#k(S2 × S2) is diffeomorphic to Y#k(S2 × S2).

However, what we really want is whether two manifolds are differmorphic.
Note that in dimension 5 or higher, we have Smale’s h-cobordism theorem:

Theorem 4.6 (Smale). If Wn(n ≥ 6) is a simply-connected compact manifold
which is a h-cobordism of X and Y . Then there exists a Morse function without
critical points in W , i.e. W is a product and X,Y are diffeomorphic.

If h-cobordism theorem held in dimension 4, then intersection forms would
truly determine the diffeomorphic type of 4-manifolds. But the proof of h-
cobordism theorem fails in dimension 4, and Donaldson’s later result shows
that in fact it doesn’t hold in dimension 4. Therefore the differential topology
of 4-manifolds is more subtle.

4.3.2 Realization of unimodular forms

Not all forms can be realized as intersection form of a closed simply-connected
4-manifold. A constraint is provided by a deep theorem of Rohlin:

Theorem 4.7 (Rohlin). The signature of a smooth, compact, spin 4-manifold
is divisible by 16.

Therefore E8 cannot be realized since it is even, and hence the possible
manifold must be spin. But its signature is 8.

However we have the following alternating result:

Theorem 4.8. For any unimodular form Q, there is a simply-connected 4-
manifold with boundary, having intersection form Q and boundary a homology
S3.

4.3.3 Freedman’s result

Freedman solved this topological problem completely.

Theorem 4.9 (Freedman). For any integral symmetric unimodular form Q,
there is a closed simply-connected topological 4-manifold that has Q as its inter-
section form. More precisely,

1. If Q is even, there is exactly one such manifold;

2. If Q is odd, there are exactly two such manifolds, at least one of which
doesn’t admit any smooth structures.
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He also used another invariant to clarify the case when Q is odd. Thus his
classification is of full completion. In particular, two smooth simply-connected
4-manifolds with isomorphic intersection forms are homeomorphic.

4.4 Donaldson’s diagonalizable theorem

However, in smooth realm, Donaldson proved the following surprising result:

Theorem 4.10 (Donaldson). The only definite forms that can be realized by
smooth 4-manifolds are just ⊕m (1) and ⊕m (−1).

Thus, none of exotic definite forms can be realized by smooth 4-manifolds.
Several results can be deduced from Donaldson’s theorem:

1. Any smooth simply-connected 4-manifold is homeomorphic to #mCP 2#nCP 2

or # ± mM8#n(S2 × S2) where M8 is the topological manifold whose
intersection form is E8.

2. A large number of topological 4-manifolds cannot admit a smooth struc-
ture

3. Existence of fake R4

We sketch how Donaldson proved this remarkable result via instanton moduli
space. He considered the SU(2)-bundle with Pontrjagin index −1 over M , and
study the topology of moduli space M.

It turns out thatM is a smooth 5-manifold with m singularities, and around
these singularities are like a cone in CP 2. Here m is half the solutions to
Q(α, α) = 1. Moreover, M contains a collar of M such that M =M∪M is a
compact oriented smooth manifold with boundary. Therefore, M is oriented
cobordant to m disjoint complex projective spaces, i.e.±CP 2q...q±CP 2.

Final attack comes from a simple algebraic lemma:

lemma 4.1. Let Q be a positive definite symmetric unimodular form with rank
r, m is defined as before. Then m ≤ r, where the equality holds if and only if
Q is diagonalizable over Z.

Now we can proof Donaldson’s result. Since the signature of intersection
form is an oriented cobordism invariant, it follows that:

r = σ ≤ mσ(CP 2) = m

But from lemma, m ≤ r. Hence the equality holds and Q is diagonalizable.
Q.E.D.
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